1. In which of the following is the oxidation number of the underlined element given **incorrectly**?

- a. K₂Cr₂O₇, +6
- b. Na₅Al(OH)₄, +3
- c. HIO₄, +5
- d. (NH₄)₂SO₄, +6
- e. NaHSO₃, +4

2. What is the coefficient of NaCl in the balanced formula unit equation?

NaClO₃ + H₂O + I₂ → HIO₃ + NaCl

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

3. Balance the following equation. How many HCl are there on the left side of the balanced equation?

K₂Cr₂O₇ + Na₂SO₃ + HCl → KCl + Na₂SO₄ + CrCl₃ + H₂O

- a. 1
- b. 2
- c. 3
- d. 4
- e. 8

4. Balance this equation for a reaction in basic solution. What is the coefficient of H₂O?

KOH + Cl₂ → KClO₃ + KCl + H₂O

- a. 8
- b. 2
- c. 3
- d. 4
- e. 6

5. Balance the following formula unit equation. What is the sum of **all** of the coefficients?

KMnO₄ + H₂O₂ + H₂SO₄ → O₂ + MnSO₄ + K₂SO₄ + H₂O

- a. 22
- b. 24
- c. 26
- d. 28
- e. 30

6. Balance the following equation. What is the sum of **all** coefficients?

Cu + H⁺ + SO₄²⁻ → Cu²⁺ + H₂O + SO₂

- a. 9
- b. 10
- c. 11
7. Balance the following net ionic equation. What is the sum of the coefficients?

\[\text{MnO}_4^- + \text{I}^- + \text{H}_2\text{O} \rightarrow \text{I}_2 + \text{MnO}_2 + \text{OH}^- \]

a. 21
b. 23
c. 25
d. 27
e. 29

8. Balance the following net ionic equation. Use H\(^+\) rather than H\(_3\)O\(^+\). What is the sum of the coefficients?

\[\text{H}_2\text{O}_2 + \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} \text{ (in acidic solution)} \]

a. 13
b. 15
c. 7
d. 9
e. 11

9. What volume of 0.0100 M KMnO\(_4\) solution is required to oxidize 42.5 mL of 0.0100 M FeSO\(_4\) sulfuric acid solution?

\[\text{MnO}_4^- + 8\text{H}^+ + 5\text{Fe}^{2+} \rightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O} \]

a. 16.0 mL
b. 8.5 mL
c. 21.3 mL
d. 80.0 mL
e. 31.9 mL

10. What is the molarity of a solution of FeSO\(_4\) if 25.06 mL of it reacts with 38.19 mL of 0.1214 M KMnO\(_4\)?

\[\text{MnO}_4^- + 8\text{H}^+ + 5\text{Fe}^{2+} \rightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O} \]

a. 0.1854 M
b. 0.3992 M
c. 0.07985 M
d. 0.4267 M
e. 0.9250 M

11. What volume of 0.1084 M (COOH\(_2\)) solution would be required to react with 0.1268 grams of KMnO\(_4\)?

\[\text{(COOH)}_2 + \text{MnO}_4^- + \text{H}^+ \rightarrow \text{CO}_2 + \text{Mn}^{2+} + \text{H}_2\text{O} \text{ (unbalanced)} \]

a. 18.50 mL
b. 37.02 mL
c. 55.51 mL
d. 24.02 mL
e. 66.61 mL

12. When household ammonia is mixed with bleach, NaOCl, toxic chlorine gas and hydrazine, N\(_2\)H\(_4\) is produced. What volume of 0.75 M NH\(_3\) would react with 100 mL of 0.35 M NaOCl?

\[\text{NH}_3 + \text{OCl}^- \rightarrow \text{Cl}_2 + \text{N}_2\text{H}_4 \text{ (unbalanced)} \]

a. 23.5 mL
b. 100 mL
c. 94 mL
d. 26 mL
e. 47 mL

13. A 50.0-mL sample of K₂Cr₂O₇ solution oxidizes 1.500 g of Na₂SO₃ to Na₂SO₄. Cr₂(SO₄)₃ is also produced. What is the molarity of the K₂Cr₂O₇ solution?
 a. 0.0794 M
b. 0.476 M
c. 2.96 M
d. 0.0952 M
e. 0.0158 M

14. In any electrochemical cell, the anode is always .
 a. the positive electrode
b. the negative electrode
c. the electrode at which some species gains electrons
d. the electrode at which some species loses electrons
e. the electrode at which reduction occurs

15. During the electrolysis of molten sodium bromide, sodium ions move .
 a. to the anode, which is positively charged
b. to the anode, which is negatively charged
c. to the cathode, which is positively charged
d. to the cathode, which is negatively charged
e. through the wire to the battery

16. The electrolysis of an aqueous sodium chloride solution using inert electrodes produces gaseous chlorine at one electrode. At the other electrode gaseous hydrogen is produced, and the solution becomes basic around the electrode. Which of the following is the equation for the cathode half-reaction in this electrolytic cell?
 a. 2Cl⁻ → Cl₂ + 2e⁻
b. 2H₂O + 2e⁻ → H₂ + 2OH⁻
c. Cl₂ + 2e⁻ → 2Cl⁻
d. H₂ + 2OH⁻ → 2H₂O + 2e⁻
e. none of these

17. How many coulombs of charge pass through a cell if 2.40 amperes of current are passed through the cell for 85.0 minutes?
 a. 2.04 × 10² C
b. 1.33 × 10¹ C
c. 1.22 × 10⁴ C
d. 2.12 × 10³ C
e. 3.40 C

18. How many moles of chromium would be electroplated by passing a current of 5.2 amperes through a solution of Cr₂(SO₄)₃ for 45.0 minutes?
 a. 0.048 mol
b. 2.9 mol
c. 0.15 mol
d. 6.9 mol
e. 0.073 mol

19. How many grams of metallic nickel can be produced by the electrolysis of aqueous nickel(II) chloride, NiCl₂, with a 0.350 ampere current for 5.00 hours?
 a. 1.19 g
b. 1.92 g
c. 7.66 g
d. 2.76 g
e. 3.83 g
20. How long would a constant current of 4.5 amperes be required to flow in order to plate out 15 g of chromium from a chromium(III) sulfate solution?
 a. 268 hr
 b. 309 hr
 c. 5.15 hr
 d. 23.2 hr
 e. 1.72 hr

21. Molten AlCl₃ is electrolyzed for 5.0 hours with a current of 0.40 ampere. Metallic aluminum is produced at one electrode and chlorine gas, Cl₂, is produced at the other. How many liters of Cl₂ measured at STP are produced at the other electrode?
 a. 0.56 L
 b. 0.63 L
 c. 0.84 L
 d. 0.98 L
 e. 1.02 L

22. Calculate the quantity of charge necessary to produce 10 liters of H₂(g) at STP from the electrolysis of water.
 a. 8.6×10^4 coulombs
 b. 3.7×10^4 coulombs
 c. 1.7×10^4 coulombs
 d. 5.3×10^4 coulombs
 e. 4.8×10^4 coulombs

23. Oxidation occurs at the in a voltaic cell and oxidation occurs at the in an electrolytic cell.
 a. anode, anode
 b. cathode, cathode
 c. anode, cathode
 d. cathode, anode
 e. anode, salt bridge

24. A current of 15.0 amperes electroplated 50.0 g of hafnium (Hf) metal from an aqueous solution in 2.00 hours. What is the oxidation number (charge) of hafnium in the solution?
 a. +1
 b. +2
 c. +3
 d. +4
 e. +5

25. A voltaic cell is constructed by immersing a strip of copper metal in 1.0 M CuSO₄ solution and a strip of aluminum in 0.50 M Al₂(SO₄)₃ solution. A wire and a salt bridge complete the circuit. The aluminum strip loses mass, and the concentration of aluminum ions in the solution increases. The copper electrode gains mass, and the concentration of copper ions decreases. Which of the following are applicable to the copper electrode?
 I. The anode
 II. The cathode
 III. The positive electrode
 IV. The electrode at which electrons are produced
 V. The negative electrode
 VI. The electrode at which electrons are used up
 a. I, III, and V
 b. I, IV, and V
 c. II, IV, and V
 d. II, III, and VI
 e. None of the first four responses contains all the correct choices and no others.

26. Which of the following species is the strongest oxidizing agent?
 a. Sn²⁺
 b. Sn⁴⁺
 c. Br₂
27. Which one of the following statements about the half-cell processes is true for the cell,

\[\text{Cd} | \text{Cd}^{2+}(1 \text{ M}) || \text{Cu}^{2+}(1 \text{ M}) | \text{Cu} \]?

a. \(\text{Cu}^{2+} \) is reduced at the anode.
b. \(\text{Cu}^{2+} \) is reduced at the cathode.
c. \(\text{Cd}^{2+} \) is reduced at the anode.
d. \(\text{Cd}^{2+} \) is reduced at the cathode.
e. The spontaneous reaction that occurs in this cell is not a redox reaction.

28. Which one of the following reactions is spontaneous (in the direction given) under standard electrochemical conditions?

a. \(\text{Pb}^{2+} + 2\text{I}^- \rightarrow \text{Pb} + \text{I}_2 \)
b. \(\text{Cu}^{2+} + \text{Fe} \rightarrow \text{Cu} + \text{Fe}^{2+} \)
c. \(2\text{Au} + \text{Pt}^{2+} \rightarrow 2\text{Au}^+ + \text{Pt} \)
d. \(\text{Mg}^{2+} + 2\text{Br}^- \rightarrow \text{Mg} + \text{Br}_2 \)
e. \(2\text{Hg} + 2\text{Cl}^- + 2\text{H}^+ \rightarrow \text{Hg}_2\text{Cl}_2 + \text{H}_2 \)

29. What is the cell potential for a cell constructed by immersing a strip of manganese in a 1.0 \(M \) \(\text{MnSO}_4 \) solution and a strip of iron in a 1.0 \(M \) \(\text{FeSO}_4 \) solution and completing the circuit by a wire and a salt bridge?

a. -1.62 V
b. +1.62 V
c. -0.74 V
d. +0.74 V
e. +1.21 V

30. A voltaic cell is constructed by immersing a strip of copper metal in 1.0 \(M \) \(\text{CuSO}_4 \) solution and a strip of aluminum in 0.50 \(M \) \(\text{Al}_2(\text{SO}_4)_3 \) solution. A wire and a salt bridge complete the circuit. The aluminum strip loses mass, and the concentration of aluminum ions in the solution increases. The copper electrode gains mass, and the concentration of copper ions decreases. What is the cell potential?

a. +1.28 V
b. +2.00 V
c. +2.34 V
d. +2.50 V
e. +3.66 V

31. Given the following standard electrode potentials:

<table>
<thead>
<tr>
<th>Half-Reaction</th>
<th>(E^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O}_2(\text{g}) + 4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{H}_2\text{O})</td>
<td>+1.23 V</td>
</tr>
<tr>
<td>(2\text{CO}_2(\text{g}) + 2\text{H}^+ + 2\text{e}^- \rightarrow (\text{COOH})_2)</td>
<td>-0.49 V</td>
</tr>
</tbody>
</table>

Which response contains all the true statements and no others? (Assume all species are present under standard electrochemical conditions.)

I. \(\text{H}_2\text{O} \) will spontaneously oxidize \((\text{COOH})_2\) to form \(\text{CO}_2 \).
II. \(\text{O}_2(\text{g}) \) will spontaneously oxidize \((\text{COOH})_2\) to form \(\text{CO}_2 \).
III. \((\text{COOH})_2\) will spontaneously reduce \(\text{O}_2(\text{g}) \) to form \(\text{H}_2\text{O} \).
IV. \(\text{H}^+ \) will spontaneously reduce \((\text{COOH})_2\) to form \(\text{CO}_2 \).
V. \(\text{CO}_2 \) will spontaneously oxidize \(\text{H}_2\text{O} \) to form \(\text{O}_2(\text{g}) \).

a. II, IV, and V
b. I, III, and IV
c. II and III
d. I and IV
32. Which response lists all of the following reactions that are spontaneous?

I. \(\text{F}_2(g) + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{F}^- + \text{SO}_4^{2-} + 4\text{H}^+ \)
II. \(\text{Cl}_2(g) + \text{Sn}^{2+} \rightarrow 2\text{Cl}^- + \text{Sn}^{4+} \)
III. \(2\text{NO}(g) + 4\text{H}_2\text{O} + 3\text{Br}_2(l) \rightarrow 6\text{Br}^- + 2\text{NO}_3^- + 8\text{H}^+ \)
IV. \(\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{I}^- \rightarrow 2\text{H}_2\text{O}(l) + \text{I}_2(s) \)

a. I and III
b. II and IV
c. I, II, and III
d. II, III, and IV
e. I, II, III, and IV

33. Calculate the reduction potential of the \(\text{Zn}^{2+}/\text{Zn} \) electrode when \([\text{Zn}^{2+}] = 1.0 \times 10^{-8} \text{ M}\).

a. -0.73 V
b. -0.75 V
c. -0.76 V
d. -0.77 V
e. -1.00 V

34. A cell is constructed by immersing a strip of silver in 0.10 \(M \) \(\text{AgNO}_3 \) solution and a strip of lead in 1.0 \(M \) \(\text{Pb(NO}_3)_2 \) solution. A wire and salt bridge complete the cell. What is the potential of the silver electrode in the cell?

a. 0.74 V
b. 0.80 V
c. 0.83 V
d. 0.86 V
e. 0.88 V

35. What is the cell potential for the reaction below if \([\text{Cr}_2\text{O}_7^{2-}] = 0.0010 \text{ M}, [\text{Cr}^{3+}] = 0.150 \text{ M}, [\text{H}^+] = 1.00 \text{ M}, \) and \([\text{Br}^-] = 0.450 \text{ M}, \) and some bromine is also present initially?

\[\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{Br}^- \rightarrow 3\text{Br}_2(l) + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}(l) \]

a. +0.28 V
b. +0.31 V
c. 0.22 V
d. +0.24 V
e. +0.29 V

36. Calculate \(E_{\text{cell}} \) for the following voltaic cell.

\[\text{Ag}/\text{Ag}^+(1.0 \times 10^{-5} \text{ M})||\text{Au}^{3+}(1.0 \times 10^{-1} \text{ M})|\text{Au} \]

a. +0.78 V
b. +0.46 V
c. +0.88 V
d. +0.98 V
e. +2.58 V

37. What is \(\Delta G^0 \) at 25°C for the reaction below? \((F = 96,500 \text{ J/V} \cdot \text{mol e}^-) \)

\[\text{Cu}^{2+} + \text{Cd} \rightarrow \text{Cu} + \text{Cd}^{2+} \]

a. -71.1 kJ
b. -143 kJ
c. 597 kJ
d. 193 kJ
e. +71.1 kJ

38. What product is formed at the anode when molten sodium chloride, NaCl, is electrolyzed using a Downs cell?
a. O₂
b. Cl₂
c. NaOH
d. H₂
e. Na metal

39. How long would a constant current of 18.0 amperes be required to flow in order for 9000. coulombs of charge to pass through a cell?
a. 200. s
b. 500. s
c. 0.002 s
d. 50. s
e. 1.6×10^5 s

40. Current is passed through a cell where the half-reaction that occurs at the cathode is $5e^- + \text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$. All the MnO₄⁻ ions present in 25.0 mL of solution have been reduced after a current of 0.600 ampere has passed for 844 seconds. What was the original concentration of MnO₄⁻ ions?
a. 7.10×10^{-3} M
b. 1.02×10^{-1} M
c. 0.21 M
d. 1.47 M
e. 4.20×10^{-2} M

41. A zinc bar weighing 3.0 kg is attached to a buried iron pipe to protect the pipe from corrosion. An average current of 0.020 A flows between the bar and the pipe. How many years will be required for the zinc bar to be entirely consumed? (1 yr = 3.16×10^7 s)
a. 600 yr
b. 14.0 yr
c. 5.99 yr
d. 7.00 yr
e. 6.66 yr

42. Calculate ΔG° for the following reaction from its E value.

$$F = 96,500 \text{ J/V} \cdot \text{mol e}^-$$
$$3\text{Hg}_2\text{Cl}_2 + 2\text{Cr} \rightarrow 2\text{Cr}^{3+} + 6\text{Hg} + 6\text{Cl}^-$$
a. -1.12×10^3 kJ
b. -585 kJ
c. -361 kJ
d. 1.62×10^3 kJ
e. -1.78×10^3 kJ
MULTIPLE CHOICE

1. ANS: C PTS: 1 TOP: Balancing Redox Reactions
2. ANS: E PTS: 1 TOP: Balancing Redox Reactions
3. ANS: E PTS: 1 TOP: Balancing Redox Reactions
4. ANS: C PTS: 1 TOP: Balancing Redox Reactions
5. ANS: C PTS: 1 TOP: Balancing Redox Reactions
6. ANS: B PTS: 1 TOP: Balancing Redox Reactions
7. ANS: C PTS: 1 TOP: Balancing Redox Reactions
8. ANS: D PTS: 1 TOP: Balancing Redox Reactions
9. ANS: B PTS: 1 TOP: Stoichiometry of Redox Reactions
10. ANS: E PTS: 1 TOP: Stoichiometry of Redox Reactions
11. ANS: A PTS: 1 TOP: Stoichiometry of Redox Reactions
12. ANS: E PTS: 1 TOP: Stoichiometry of Redox Reactions
13. ANS: A PTS: 1 TOP: Stoichiometry of Redox Reactions
14. ANS: D PTS: 1 TOP: Electrodes
15. ANS: D PTS: 1 TOP: The Electrolysis of Molten Salts
16. ANS: B PTS: 1 TOP: The Electrolysis of Aqueous Salt Solutions
17. ANS: C PTS: 1 TOP: Faraday's Law of Electrolysis
23. ANS: A PTS: 1 TOP: Voltaic or Galvanic Cells
24. ANS: D PTS: 1
25. ANS: D

A table of standard electrode potentials may be necessary for this question.

PTS: 1 TOP: Voltaic or Galvanic Cells

26. ANS: C
A table of standard electrode potentials may be necessary for this question.

PTS: 1 TOP: Standard Electrode Potentials

27. ANS: B
A table of standard electrode potentials may be necessary for this question.

PTS: 1 TOP: Uses of Standard Electrode Potentials

28. ANS: B
A table of standard electrode potentials may be necessary for this question.

PTS: 1 TOP: Uses of Standard Electrode Potentials

29. ANS: D
A table of standard electrode potentials may be necessary for this question.

PTS: 1 TOP: Uses of Standard Electrode Potentials

30. ANS: B
A table of standard electrode potentials may be necessary for this question.

31. ANS: C
 PTS: 1 TOP: Uses of Standard Electrode Potentials

32. ANS: E
 PTS: 1 TOP: Standard Electrode Potentials for Other Half-Reactions

33. ANS: E
 PTS: 1 TOP: Standard Electrode Potentials for Other Half-Reactions

34. ANS: A
 PTS: 1 TOP: The Nernst Equation

35. ANS: C
 PTS: 1 TOP: The Nernst Equation

36. ANS: D
 PTS: 1 TOP: The Nernst Equation

37. ANS: B
 PTS: 1 TOP: The Relationship of E... to Delta G0 and K

38. ANS: B PTS: 1 TOP: The Electrolysis of Molten Salts

40. ANS: E PTS: 1 TOP: Faraday's Law of Electrolysis

41. ANS: B
 PTS: 1 TOP: Corrosion Protection

42. ANS: B PTS: 1 TOP: The Relationship of E... to Delta G0 and K